R/utils_clustering.R
compute_metric.Rd
Metric will be computed from 2 to max_k clusters. Note that the row number in results will be different from k.
compute_metric(dmat, clusters, metric_name, max_k = 14)
distance matrix output of compute_dmat()
or stats::dist()
output of compute_clusters()
or fastcluster::hclust()
"silhouette" or "dunn"
maximum number of clusters to cut using dendextend::cutree()
. Default is 14.
a data frame with columns k
and score
data_to_cluster <- iris[c("Petal.Length", "Sepal.Length")]
dmat <- compute_dmat(data_to_cluster, "euclidean", TRUE)
clusters <- compute_clusters(dmat, "complete")
compute_metric(dmat, clusters, "dunn")
#> k score
#> 1 2 0.04360231
#> 2 3 0.05621762
#> 3 4 0.07360085
#> 4 5 0.07065255
#> 5 6 0.10059379
#> 6 7 0.10977727
#> 7 8 0.11995125
#> 8 9 0.12115467
#> 9 10 0.12442737
#> 10 11 0.13670682
#> 11 12 0.13670682
#> 12 13 0.15281355
#> 13 14 0.15995945